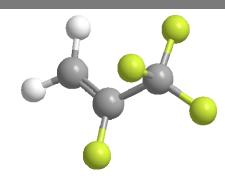
Automotive Material Investigation with Low GWP Refrigerant HFO-1234yf

Mary Koban, Sr Automotive Technical Engineer DuPont Fluoroproducts, Wilmington, DE



Agenda

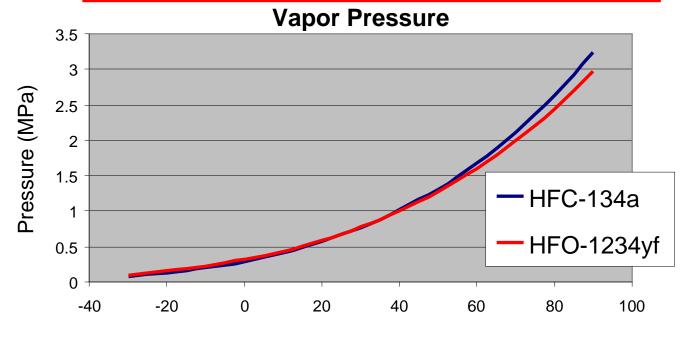
- HFO-1234yf
- HFO-1234yf Properties
- Thermodynamic Properties
- HFO-1234yf Flammability Comparison
- Previous Studies
- Thermal Stability
- Material Compatibility
- Summary

HFO-1234yf

HFO-1234yf or Hydrofluoro- olefin

2,3,3,3,-tetrafluoroprop-1-ene (CF₃CF=CH₂)

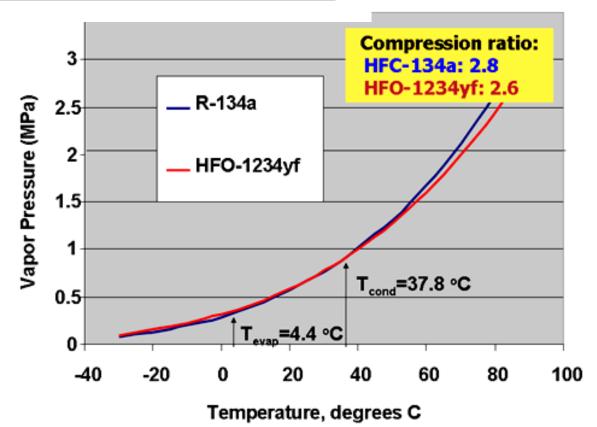
Refrigerant Which Offers Balance Of Properties And Performance


- Excellent Environmental Properties, GWP = 4, Zero ODP
- Comparable To 134a For Refrigeration Properties
- Acceptable Stability And Compatibility Properties

Mildly Flammable (But Significantly Less So Than HFC-152a and R32)

HFO-1234yf Properties

<u>Properties</u>	HFO-1234yf	<u>HFC-134a</u>
Pvap, MPa (25°C)	0.677	0.665
Pvap, MPa (80°C)	2.44	2.63
GWP (100 ITH)	4	1430 (AR4)
Toxicity	A-Low	A-Low
Flammability	Mild	None


- Same operating conditions as 134a (similar P/T curve)
- •Thermally stable under extreme use conditions in a MAC system
- •Cooling capacity equivalent to 134a
- •Energy efficiency better or equivalent to 134a
- Only modest design changes required in MAC

HFO-1234yf has vapor pressure, toxicity class A, similar to R-134a, but has mild flammability

Thermodynamic Properties

Properties	HFO-1234yf	HFC-134a
Boiling Point, Tb	-29°C	-26°C
Critical Point, Tc	95°C	102°C
P _{vap} , MPa (25°C)	0.677	0.665
P _{vap} , MPa (80°C)	2.44	2.63
Liquid Density, kg/m ³ (25°C)	1094	1207
Vapor Density, kg/m ³ (25°C)	37.6	32.4

Flammability Comparison

	HFC-134a	HFO-1234yf	HFC-152a	Propane	Gasoline	Hydrogen	Ethanol**
Flame Limits- ASTM E681-01 at 21C							
LFL (vol% in Air)	N/A	6.2	3.9	2.2	1.4	4	3.3
UFL (vol% in Air)	N/A	12.3	16.9	10	7.6	75	19.0
Minimum Ignition Energy -MIE (mJ)	N/A	>5000	0.38	0.25	0.29	0.016	0.65
Heat of Combustion (kJ/g)	4.2	10.7	16.5	46.3	47	142.9	29.8
Burning Velocity (cm/s)	N/A	1.5	23	46	34	265-325	58
Flammability Index-Low value prefe	erred						
R	N/A	0.97	1.78	1.99			
F	N/A	0.27	0.5	0.55	0.57	0.77	0.58
RF	N/A	3.6	16.6	56.7	62.8		41.7
RF2	N/A	0.6	17.9	37.2			
* Severy, et. Al.							
** Brandes and Ural							

HFO-1234yf flammability characteristics are "milder than" those of hydrocarbon gases or other commonly used products within the service repair shop.

Previous Material Compatibility Studies

- HFO-1234yf has been fully evaluated with traditional automotive A/C pieces
- Work done by wide array of industry groups
 - Global OEM's, Tier 1/Tier 2 Automotive Industry Suppliers
 - JAMA-JAPIA
 - SAE Cooperative Research Project (CRP1234-2)
- Some selected previous information shown on next slides

14

Material Evaluation Results (1234yf)

Thermal Stability Test

PAG

PAG1:Serial PAG for MACs PAG2:PAG (without extreme pressure

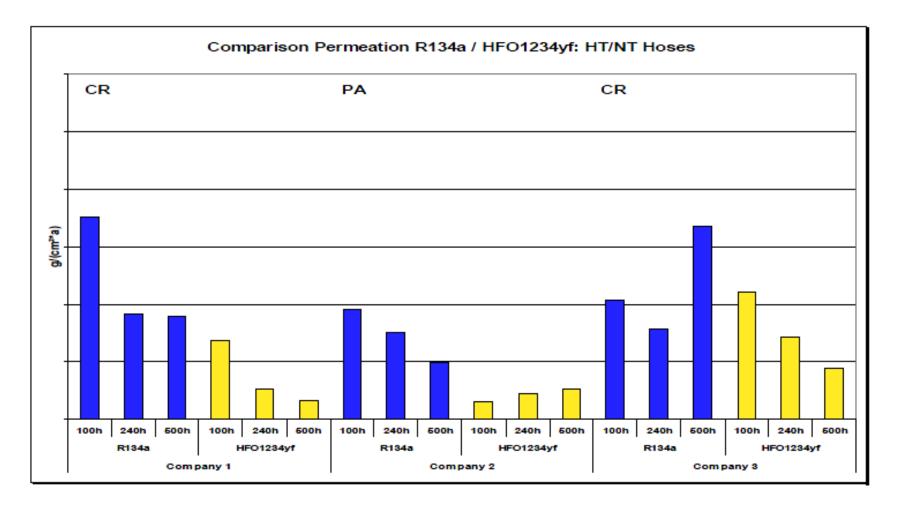
additive, oiliness additive)

POE

POE1:Serial POE for HV AC POE2:Serial POE for Stationary AC

Proposed Spec <3.3

ANSI/ASHRAE97-1999


Ref.			R1:	34a		1234yf						
Oil		PAG1	PAG1 PAG2 POE1 POE2 PAG1					POE1	POE2			
Condition			175deg-C/14days									
Low Moisture	ppm				<1	10						
Total Acid Number	mgKOH/g	0.03	0.00	0.00	0.00	1.40	0.06	0.01	0.05			
Low Moisture	ppm				10	00						
Total Acid Number	mgKOH/g	0.82	0.00	0.01	0.10	2.44	0.17	0.01	1.18			
High Moisture	ppm		10000									
Total Acid Number	mgKOH/g	1.75	0.00	21.3	21.4	3.04	0.90	19.5	21.1			
Condition		200deg-C/14days										
Low Moisture	ppm				<1	10						
Total Acid Number	mgKOH/g	1.28	0.00	0.00	0.00	2.88	1.12	0.00	0.06			
Low Moisture	ppm				10	00						
Total Acid Number	mgKOH/g	KOH/g 1.15 0.54 0.1 0.21 3.49		1.40	2.00	2.84						
High Moisture	ppm				100	000						
Total Acid Number	mgKOH/g	2.19	0.87	21.4	22.3	3.22	2.05	20.2	21.2			

Ref:JAMA-JAPIA 2008 VDA Winter Meeting

Differences in PAG additive package potential to influence TAN, acid number Several PAG lubricant suppliers have optimized PAG's for HFO-1234yf use

QUPONT.

SAE CRP1234-2 Select Permeation Results

In general, for materials tested, HFO-1234yf has lower permeation rates

Ref: Grimm 2008 SAE AARS Phoenix 2008

Previous Material Compatibility Studies

Material		Compatibility	1	Permeation	Permeati	on	
	PAG Oil A HFO-1234yf	PAG Oil B HFO-1234yf	PAG Oil A R-134a	HFO-1234yf	R-134a		ILK Dresden
Seals							ilk Dresden 🖊
EPDM							Institut für Luft- und Kältetechnik
EPDM							gemeinnützige Gesellschaft mbH
EPDM						L	geniennaaige eeseneenat men
EPDM							
HNBR							
HNBR							
HNBR							
CR						Ret:	2009 SAE CRP1234-2 Report
Normal Temp Hos	ses						
CR							
CIIR							Our an a alan
CR							Green color
CIIR							indicates no issues
PA							
PA							were noted, Yellow
High Temp Hoses	s						color indicates
CR							
CR							some improvements
IIR							-
PA							are suggested, no
PA							color indicates
PA							
Thermo-plastics							materials were not
PPS1							tested
PPS2							
PEI							

In all cases, some combination of commercially available material compatible with HFO-1234yf

HFO-1234yf/PAG Plastics Compatibility

ND8 PAG at 100°C for two weeks

Refrigerant	Plastics	Rating	24 h Post Weight Chg. %	Physical Change
HFO-1234yf	Polyester	1	4.4	0
ıı	Nylon	1	-1.5	1
II .	Epoxy	1	0.3	1
"	Polyethylene Terephthalate	1	2.0	0
"	Polyimide	0	0.2	0

Refrigerant	Plastics	Rating	24 h Post Weight Chg. %	Physical Change
R134a	Polyester	1	5.6	0
"	Nylon	1	-1.4	1
"	Epoxy	1	0.3	1
"	Polyethylene Terephthalate	1	2.8	0
"	Polyimide	0	0.7	0

Rating 0 = best when weight gain < 1 and physical change = 0

1 = borderline when weight gain > 1 and < 10 and/or physical change upto 2

2 = incompatible when weight gain > 10 and/or physical change = 2

HFO-1234yf/PAG Elastomers Compatibility

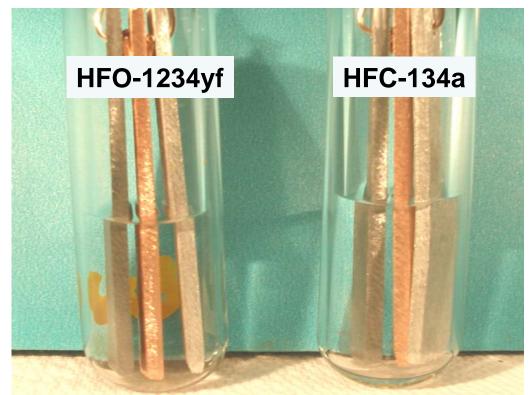
ND8 PAG at 100°C for two weeks

Refrigerant	Elastomers	Rating	24 h Post Linear Swell %	24 h Post Weight Gain %	24 h Post Delta Hardness
HFO-1234yf	Neoprene WRT	0	0.0	-0.3	1.0
II.	HNBR	0	1.6	5.5	-7.0
"	NBR	0	-1.2	-0.7	4.0
II.	EPDM	0	-0.5	-0.6	4.0
II.	Silicone	1	-0.5	2.5	-14.5
II.	Butyl rubber	0	-1.6	-1.9	0.5

Refrigerant	Elastomers	Rating	24 h Post Linear Swell %	24 h Post Weight Gain %	24 h Post Delta Hardness
R134a	Neoprene WRT	0	-0.6	-1.3	2
"	HNBR	0	2.1	8.6	-5.5
11	NBR	0	0.0	3.0	-3.5
"	EPDM	0	-1.1	-0.4	-2
11	Silicone	0	-1.4	1.4	-2.5
II .	Butyl rubber	0	-1.1	-1.6	-3.5

Rating

- 0 < 10% weight gain and < 10% Linear swell and < 10 hardness unit change
- 1 > 10% weight gain or > 10% Linear swell or >10 hardness unit change
- 2 > 10% weight gain and > 10% Linear swell and > 10 hardness unit change



HFO-1234yf Thermal Stability I

Rapidly decomposing in the atmosphere But stable under service conditions!

Neat HFO-1234yf vs Neat HFC-134a After 2 wks @ 200 °C

Sealed tube testing based on ASHRAE-ANSI STD 97

No Detectable Fluoride nor Acid Generation

HFO-1234yf Thermal Stability II

HFO-1234yf/POE vs HFC-134a/POE

AFTER TWO

WEEKS @ 175 °C

Front View

HFO-1234yf HFC-134a

Side View

HFO-1234yf HFC-134a

No Detectable Fluoride nor Acid Generation

DuPont tested multiple POE's and found good thermal stability/miscibility in systems tested

Compatibility with Additional Plastics

% weight change after 2 wks @ 100°C in HFO-1234yf vs HFC-134a

Polymer	Immediately a	fter exposure	24 Hrs afte	r exposure		
	HFC-134a	HFO-1234yf	HFC-134a	HFO-1234yf		
Polyester Resin	7.6	4.2	2.2	2.3		
Nylon Resin	0.3	-0.2	-0.5	-0.4		
Epoxy Resin	0.1	-0.1	-0.3	-0.1		
Polyester PET	9.3	5.3	5.8	3.8		
Polyester PBT	12.5	1.1	12.3	1.1		
Polycarbonate	4.2	0.9	3.9	0.8		
Polyimide	3.7	3.4	3.2	3.2		
Polyethylene	1.3	1.7	1.1	1.3		
PTFE	2.7	3.0	2.3	2.4		
FEP	3.1	3.8	2.7	3.2		
ETFE	6.0	4.9	4.8	4.2		
Phenolic Resin	-0.8	-0.8	-1.0	-0.8		
Acetal Resin	2.7	0.7	2.1	0.6		
PET Film	0.8	-1.0	-1.3	-2.1		

Compatibility with Additional Elastomers

% weight change after 2 wks @ 100°C in HFO-1234yf vs HFC-134a

Elastomer	Immediately at	fter exposure	24 Hrs after	exposure		
	HFC-134a	HFO-1234yf	HFC-134a	HFO-1234yf		
Neoprene WRT	2.6	2.4	1.3	1.3		
HNBR	15.2	5.2	9.9	4.4		
NBR	14.1	5.8	8.0	4.6		
EPDM (Nordel)	3.6	3.5	0.7	0.6		
Silicone	10.6	2.0	-0.1	-0.4		
Butyl Rubber	4.1	5.0	3.2	4.1		
Terminal seal	2.2	4.8	0.8	2.0		
Buna S (SBR)	2.7	2.1	1.1	0.8		
Viton	47.4	20.0	8.0	8.0		
Hypalon	3.2	2.7	2.6	2.4		
Neoprene o-ring	-0.4	3.0	-0.5	2.3		

Overall: Comparable degree of interaction of polymers & elastomers with 1234yf and 134a

Miscibility ISO 120 POE: HFO-1234yf vs. R-134a

120 cSt Branched Acid POE Lubricant

Refrigerant:	HFO	1234	yf				Ten	mperature (C)																					
Lubricant: ISC	D120	Bran	chec	Aci	d PO	E																							
% POE	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
5%	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М
10%	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Ν	N
15%	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Μ	М	М	М	М	Ν	Ν	N
20%	М	М	М	М	М	М	М	М	М	М	M	М	М	М	М	М	М	М	М	М	М	Μ	М	М	Μ	М	z	Ν	N
30%	М	М	М	М	М	М	М	М	М	М	M	М	М	М	М	М	М	М	М	М	М	Μ	M	М	Μ	М	Z	Ν	N
60%	М	М	М	М	М	М	М	М	М	М	M	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М
70%	М	М	М	М	М	М	М	М	М	М	M	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М
Refrigerant:	HFC-	-134a																											
Lubricant: ISC	0 120	Bran	chec	I Aci	d PO	E	Ten	nper	ature	е	(C)																		
% POE	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
5%	N	N	N	М	М	М	М	М	М	М	M	М	М	М	М	М	М	М	М	М	М	М	M	М	М	М	М	М	М
10%	N	N	N	N	N	N	М	М	М	М	M	М	М	М	М	М	М	М	М	М	М	М	M	М	М	М	М	М	М
15%	N	N	N	N	N	N	N	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М
20%	N	N	N	N	N	N	N	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М
30%	N	N	N	N	N	N	N	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М
60%	N	М	М	М	М	M	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М
70%	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М

HFO-1234yf has larger miscibility range

Miscibility ISO 68 POE: HFO-1234yf vs. R-134a

68 cSt Mixed Acid POE

Refrigerant:	HFO	1234	yf																										
Lubricant: ISO 68 Mixed Acid POE							Temperature				(C)																		
% POE	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
5%	М	М	М	М	М	М	M	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	N
10%	N	N	N	М	М	М	М	М	М	Μ	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Z	N	Z	N
15%	N	Ν	N	Z	Ν	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	N	Z	Ν	N	N
20%	N	Ν	N	Z	Ν	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Ζ	N	Z	Ν	N	N
30%	N	Ν	N	Z	Z	М	М	М	М	Μ	М	М	М	Μ	М	М	М	Μ	М	М	М	М	М	Z	Z	Z	Z	Z	N
60%	М	М	М	М	М	М	М	M	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М
70%	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М
Refrigerant:	HFC-	134a																											
Lubricant: ISO 68 Mixed Acid POE					E		Temperature				(C)																		
% POE	-50	-45	-40	-35	-30	-25	-20	-15	-10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
5%	N	Ν	N	Ν	Z	Ν	Z	М	М	Μ	М	М	М	Μ	М	М	М	Μ	М	М	М	М	М	М	М	М	М	Μ	М
10%	N	Ν	N	Ν	Z	N	Ζ	Z	Z	Z	М	М	М	Μ	М	М	М	Μ	М	М	М	М	М	М	М	М	М	Μ	М
15%	N	Ν	N	Ν	Ν	Ν	N	Z	Ν	z	N	М	М	Μ	М	М	М	М	М	М	М	М	М	М	М	М	М	Μ	N
20%	N	Z	N	Z	Ν	N	N	N	N	Z	N	N	М	М	М	М	М	М	М	М	Μ	М	М	М	М	М	М	М	N
30%	N	N	N	N	N	N	N	N	N	N	N	N	М	M	М	М	М	М	М	М	М	М	M	М	М	М	М	М	N
60%	N	Z	N	Z	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М
70%	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М

HFO-1234yf has larger miscibility range

Summary

Over last four plus years, HFO-1234yf has been thoroughly investigated by the Automotive Industry

Previous DuPont Material Compatibility/Thermal Stability results indicate good performance with common automotive materials

JAMA and SAE CRP1234-2 results indicate good compatibility/thermal stability with various commercially available common automotive materials

Summary

The next phase of HFO-1234yf product testing will concentrate on understanding the potential to leverage HFO-1234yf for use in electric and hybrid vehicles.

In this investigation, material compatibility with POE lubricants, electric motor materials, and related automotive components were evaluated.

Test results indicate:

- HFO-1234yf is thermally stable even at high temperatures (200°C)
- HFO-1234yf/POE lubricants found to stable at temperatures (175°C).
- HFO-1234yf is slightly less aggressive these materials than HFC-134a, indicating potential for use of HFO-1234yf with electric and hybrid vehicles.
- HFO-1234yf is more miscible with POE lubricants than HFC-134a indicating suitability for use in electric and hybrid vehicles.

More information can be found at:

www.Refrigerants.DuPont.com www.SmartAutoAC.com

Author contact information:

mary.e.koban@usa.dupont.com

Thank You!

Disclaimer:

The information set forth herein is furnished free of charge and based on technical data that DuPont believes to be reliable. It is intended for use by persons having technical skill, at their own risk. Since conditions of use are outside our control, DuPont make no warranties, expressed or implied and assume no liability in connection with any use of this information. Nothing herein is to be taken as a license to operate under, or a recommendation to infringe any patents or patent applications.

